Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the variations in far-ultraviolet (FUV) and Hαstar formation rates (SFR), SFRUVand SFRHα, respectively, at subkiloparsec scales in 11 galaxies as part of the Deciphering the Interplay between the Interstellar Medium, Stars, and the Circumgalactic medium survey. Using archival GALEX FUV imagery and Hα+[Nii] narrowband images obtained with the Vatican Advanced Technology Telescope, we detect a total of 1335 (FUV-selected) and 1474 (Hα-selected) regions of recent high-mass star formation, respectively. We find the Hα-to-FUV SFR ratios tend to be lower primarily for FUV-selected regions, where SFRHαgenerally underestimates the SFR by an average factor of 2–3, for SFR < 10−4M⊙yr−1. In contrast, the SFRs are generally observed to be consistent for Hα-selected regions. This discrepancy arises from morphological differences between the two indicators. Extended FUV morphologies and larger areas covered by FUV-only regions, along with decreasing overlap between FUV clumps and compact Hiiregions withR/R25suggest that stochastic sampling of the initial mass function may be more pronounced in the outer regions of galaxies. Our observed Hα-to-FUV SFR ratios are also consistent with stochastic star formation model predictions. However, using larger apertures that include diffuse FUV emission results in an offset of 1 dex between SFRHαand SFRUV, suggesting that the observed low Hα-to-FUV SFR ratios in galaxies are likely caused by diffuse FUV emission, which can contribute ∼60%–90% to the total FUV flux.more » « lessFree, publicly-accessible full text available June 12, 2026
-
Abstract VV 191 is a nearby (z∼ 0.05), overlapping (occulting) galaxy pair, where a multiple-armed spiral galaxy is backlit by an elliptical galaxy. The overlap is used to derive and map dust attenuation in two James Webb Space Telescope NIRCam filters (F090W and F150W) and one visible-band Hubble Space Telescope Wide Field Camera 3 filter (F606W). We present maps of the attenuation in each filter, the ratio of total to selective attenuation with a near-infrared (NIR) color excess, , and the NIR attenuation curve power-law index,α, approximated via Monte Carlo resampling methods. The maps trace the optically thin outer disk of foreground galaxy VV 191b at ∼100 pc physical resolution. We find the distributions of attenuation and to be close to log-normal, and the distribution ofαto be close to Gaussian throughout the disk and in high signal-to-noise ratio areas of VV191b. We analyze three spatially resolved handpicked regions in the far outer disk that are well backlit by the background galaxy.more » « lessFree, publicly-accessible full text available September 2, 2026
-
Abstract Recent JWST observations atz > 6 may imply galactic ionizing photon production above prior expectations. Under observationally motivated assumptions about escape fractions, these suggest az ~ 8–9 end to reionization, in tension with thez < 6 end required by the Lyαforest. In this work, we use radiative transfer simulations to understand what different observations tell us about when reionization ended and when it started. We consider a model that ends too early (zend ≈ 8) alongside two more realistic scenarios withzend ≈ 5: one starting late (z ~ 9) and another early (z ~ 13). We find that the latter requires up to an order-of-magnitude evolution in galaxy ionizing properties at 6 < z < 12, perhaps in tension with measurements ofξionby JWST, which indicate little evolution. We study how these models compare to recent measurements of the Lyαforest opacity, mean free path, intergalactic medium thermal history, visibility ofz > 8 Lyαemitters, and the patchy kSZ signal from the cosmic microwave background (CMB). We find that neither of the late-ending scenarios is strongly disfavored by any single data set. However, a majority of observables, spanning several distinct types of observations, prefer a late start. Not all probes agree with this conclusion, hinting at a possible lack of concordance arising from deficiencies in observations and/or theoretical modeling. Observations by multiple experiments (including JWST, Roman, and CMB-S4) in the coming years will establish a concordance picture of reionization's beginning or uncover such deficiencies.more » « lessFree, publicly-accessible full text available February 5, 2026
-
Abstract The first James Webb Space Telescope (JWST) Near InfraRed Camera imaging in the field of the galaxy cluster PLCK G165.7+67.0 (z= 0.35) uncovered a Type Ia supernova (SN Ia) atz= 1.78, called “SN H0pe.” Three different images of this one SN were detected as a result of strong gravitational lensing, each one traversing a different path in spacetime, thereby inducing a relative delay in the arrival of each image. Follow-up JWST observations of all three SN images enabled photometric and rare spectroscopic measurements of the two relative time delays. Following strict blinding protocols which oversaw a live unblinding and regulated postunblinding changes, these two measured time delays were compared to the predictions of seven independently constructed cluster lens models to measure a value for the Hubble constant,H0 = 71.8 + 9.2 − 8.1 km s−1Mpc−1. The range of admissibleH0values predicted across the lens models limits further precision, reflecting the well-known degeneracies between lens model constraints and time delays. It has long been theorized that a way forward is to leverage a standard candle, but this has not been realized until now. For the first time, the lens models are evaluated by their agreement with the SN absolute magnifications, breaking degeneracies and producing our best estimate,H0 = km s−1Mpc−1. This is the first precise measurement ofH0from a multiply imaged SN Ia and only the second from any multiply imaged SN.more » « less
-
Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuringβ(the exponent of the adopted power law LF,dN/dL = ϕ(L)∝(1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime whereβ > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime whereβ < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M⊙. We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF withβ = 2.55−0.56+0.72fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ∗= 54M⊙pc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M⊙(within its Einstein radius) in the galaxy cluster.more » « less
-
Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract New JWST/NIRCam wide-field slitless spectroscopy provides redshifts for fourz> 8 galaxies located behind the lensing cluster MACS J0416.1−2403. Two of them, “Y1” and “JD,” have previously reported spectroscopic redshifts based on Atacama Large Millimeter/submillimeter Array measurements of [Oiii] 88μm and/or [Cii] 157.7μm lines. Y1 is a merging system of three components, and the existing redshiftz= 8.31 is confirmed. However, JD is atz= 8.34 instead of the previously claimedz= 9.28. JD’s close companion, “JD-N,” which was a previously discoveredz> 8 candidate, is now identified at the same redshift as JD. JD and JD-N form an interacting pair. A new candidate atz> 8, “f090d_018,” is also confirmed and is atz= 8.49. These four objects are likely part of an overdensity that signposts a large structure extending ∼165 kpc in projected distance and ∼48.7 Mpc in radial distance. They are magnified by less than 1 mag and have an intrinsicMUVranging from −19.57 to −20.83 mag. Their spectral energy distributions show that the galaxies are all very young with ages ∼ 4–18 Myr and stellar masses of about 107–8M⊙. These infant galaxies have very different star formation rates ranging from a few to over a hundred solar masses per year, but only two of them (JD and f090d_018) have blue rest-frame UV slopesβ< −2.0 indicative of a high Lyman-continuum photon escape fraction that could contribute significantly to the cosmic hydrogen-reionizing background. Interestingly, these two galaxies are the least massive and least active ones among the four. The other two systems have much flatter UV slopes largely because of their high dust extinction (AV= 0.9–1.0 mag). Their much lower indicated escape fractions show that even very young, actively star-forming galaxies can have a negligible contribution to reionization when they quickly form dust throughout their bodies.more » « less
-
Abstract The Prime Extragalactic Areas for Reionization and Lensing Science, a James Webb Space Telescope (JWST) GTO program, obtained a set of unique NIRCam observations that have enabled us to significantly improve the default photometric calibration across both NIRCam modules. The observations consisted of three epochs of 4-band (F150W, F200W, F356W, and F444W) NIRCam imaging in the Spitzer IRAC Dark Field (IDF). The three epochs were six months apart and spanned the full duration of Cycle 1. As the IDF is in the JWST continuous viewing zone, we were able to design the observations such that the two modules of NIRCam, modules A and B, were flipped by 180° and completely overlapped each other’s footprints in alternate epochs. We were therefore able to directly compare the photometry of the same objects observed with different modules and detectors, and we found significant photometric residuals up to ∼0.05 mag in some detectors and filters, for the default version of the calibration files that we used (jwst_1039.pmap). Moreover, there are multiplicative gradients present in the data obtained in the two long-wavelength bands. The problem is less severe in the data reduced using the latest pmap (jwst_1130.pmapas of 2023 September), but it is still present, and is non-negligible. We provide a recipe to correct for this systematic effect to bring the two modules onto a more consistent calibration, to a photometric precision better than ∼0.02 mag.more » « less
-
Abstract We present a new parametric lens model for the G165.7+67.0 galaxy cluster, which was discovered with Planck through its bright submillimeter flux, originating from a pair of extraordinary dusty star-forming galaxies (DSFGs) atz≈ 2.2. Using JWST and interferometric mm/radio observations, we characterize the intrinsic physical properties of the DSFGs, which are separated by only ∼1″ (8 kpc) and a velocity difference ΔV≲ 600 km s−1in the source plane, and thus are likely undergoing a major merger. Boasting intrinsic star formation rates SFRIR= 320 ± 70 and 400 ± 80M⊙yr−1, stellar masses of and 10.3 ± 0.1, and dust attenuations ofAV= 1.5 ± 0.3 and 1.2 ± 0.3, they are remarkably similar objects. We perform spatially resolved pixel-by-pixel spectral energy distribution (SED) fitting using rest-frame near-UV to near-IR imaging from JWST/NIRCam for both galaxies, resolving some stellar structures down to 100 pc scales. Based on their resolved specific star formation rates (SFRs) andUVJcolors, both DSFGs are experiencing significant galaxy-scale star formation events. If they are indeed interacting gravitationally, this strong starburst could be the hallmark of gas that has been disrupted by an initial close passage. In contrast, the host galaxy of SN H0pe has a much lower SFR than the DSFGs, and we present evidence for the onset of inside-out quenching and large column densities of dust even in regions of low specific SFR. Based on the intrinsic SFRs of the DSFGs inferred from UV through far-infrared SED modeling, this pair of objects alone is predicted to yield an observable 1.1 ± 0.2 core-collapse supernovae per year, making this cluster field ripe for continued monitoring.more » « less
-
Abstract With its unprecedented sensitivity and spatial resolution, the James Webb Space Telescope (JWST) has opened a new window for time-domain discoveries in the infrared. Here we report observations in the only field that has received four epochs (spanning 126 days) of JWST NIRCam observations in Cycle 1. This field is toward MACS J0416.1−2403, which is a rich galaxy cluster at redshiftz= 0.4 and is one of the Hubble Frontier Fields. We have discovered 14 transients from these data. Twelve of these transients happened in three galaxies (withz= 0.94, 1.01, and 2.091) crossing a lensing caustic of the cluster, and these transients are highly magnified by gravitational lensing. These 12 transients are likely of a similar nature to those previously reported based on the Hubble Space Telescope (HST) data in this field, i.e., individual stars in the highly magnified arcs. However, these 12 could not have been found by HST because they were too red and too faint. The other two transients are associated with background galaxies (z= 2.205 and 0.7093) that are only moderately magnified, and they are likely supernovae. They indicate a demagnified supernova surface density, when monitored at a time cadence of a few months to a ∼3–4μm survey limit of AB ∼28.5 mag, of ∼0.5 arcmin−2integrated toz≈ 2. This survey depth is beyond the capability of HST but can be easily reached by JWST.more » « less
An official website of the United States government
